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Abstract

We consider limit probabilities of first order properties in random
graphs with a given degree sequence. Under mild conditions on the de-
gree sequence, we show that the closure set of limit probabilities is a finite
union of closed intervals. Moreover, we characterize the degree sequences
for which this closure set is the interval [0, 1], a property that is intimately
related with the probability that the random graph is acyclic. As a side
result, we compile a full description of the cycle distribution of random
graphs and study their fragment (disjoint union of unicyclic components)
in the subcritical regime. Finally, we amend the proof of the existence of
limit probabilities for first order properties in random graphs with a given
degree sequence; this result was already claimed by Lynch [IEEE LICS
2003] but his proof contained some inaccuracies.

1 Introduction

Since the seminal work of Erdős and Rényi [7], random graphs have been central
objects of study in probabilistic combinatorics. In this area it is common to ask,
given a graph property φ and a sequence of random graphs Gn increasing in
order, what is the limit probability that Gn satisfies φ. Of course, this limit may
or may not exist, and the question about its existence is interesting on its own.
In a related direction, for families L of “well-behaved” graph properties, one
may want to obtain a procedure (i.e., an algorithm) that given some property
φ in L computes the limit probability p(φ) := limn→∞ P(Gn satisfies φ), if it
exists.

The model-theoretical approach to the questions above is to classify graph
properties according to the formal languages that can express them, and obtain
convergence results for the entire language rather than for individual properties.
One such language is the first order (FO) language of graphs, which consists
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of first order logic, where variables represent vertices, plus a binary adjacency
relation, which is meant to be symmetric and anti-reflexive. Fagin [8] and, inde-
pendently, Glebski et. al. [9] showed that p(φ) ∈ {0, 1} for all FO-properties φ in
the case that Gn = Gn(1/2), the binomial random graph on n vertices, obtained
by including each edge independently with probability 1/2. Even more, there is
a procedure to determine the limit probability for any given FO-property. This
result, which gave rise to the model-theoretical study of random graphs, is an
example of a zero-one law. A more general kind of result is a convergence law,
which simply states that for a given sequence of random graphs Gn and a given
language L, the limit probability p(φ) exists for all properties φ expressible in
L. This work continues a line of research [11, 17] that studies the geometry of
the set of limit probabilities in settings where a convergence law holds.

In this paper we deal with the case where Gn is a random graph whose degree
sequence has been fixed a priori. A degree sequence of length n is a sequence
dn = (di)i∈[n] where di is a non-negative integer with di < n for all i ∈ [n]
and

∑
i∈[n] di is even. We call dn feasible, if there is at least one graph G with

V (G) = [n] whose degree sequence is dn, meaning that for all v ∈ [n], it has
degree dv. Given a feasible degree sequence dn on n vertices, Gn(dn) denotes
the uniform random graph with vertex set [n] and whose degree sequence is
dn. A sequence of degree sequences is d = (dn)n∈N, where dn = (dn,i)i∈[n] is a
degree sequence on n vertices. By convention, we set dn,i = 0 for each i ≥ n,
and, if the context is clear, we use di = dn,i. Given d, we define the sequence of
random graphs G(d) = (Gn(dn))n∈N.

In order to study FO logic on G(d), we will need to impose some regularity
conditions on d. These conditions are better stated in terms of degree distribu-
tions. For k ≥ 0, define nk = nn,k = |{i ∈ [n] | dn,i = k}|. Given n ∈ N and
d, the degree distribution Dn = Dn(d) is given by P(Dn = k) = nn,k/n. Equiv-
alently, Dn is the probability distribution of the degree of a uniform random
vertex in Gn(dn). The following is our main assumption, used throughout this
paper.

Assumption 1.1. There exists a probability distribution D = D(d) on N0 such
that

(i) dn is feasible for all n ∈ N;

(ii) Dn → D, in distribution;

(iii) limn→∞ E [Dn] (resp., limn→∞ E
[
D2

n

]
), exists, is bounded and equals to

E [D] (resp., E
[
D2
]
);

(iv) if P(D = k) = 0 for some k ∈ N0, then nn,k = 0 for all n ∈ N.

In this context a convergence law for FO-properties holds.

Theorem 1.2. Suppose that d satisfies Assumption 1.1. Then for any property
φ in the FO language of graphs, the following limit exists

p(φ,d) := lim
n→∞

P(Gn(dn) satisfies φ). (1)
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The proof of this theorem is not the primary goal of this paper and is sketched
in Section 8. Very similar results were established by Lynch in two closely related
articles [18, 20]. The difference between Lynch’s articles is the assumptions
imposed on d. These assumptions are non-comparable with Assumption 1.1.
However, due to a slight oversight, both Lynch’s proofs are incorrect. Even more,
the convergence law does not always exist under any of his two assumptions.
Nevertheless, under Assumption 1.1 his proof strategy can be used correctly
and this assumption is essentially the weakest condition required to have a
convergence law.

Given that the limit in (1) exists for all FO-properties φ, our object of
interest is the set of limits. Define

L(d) := {p(φ,d) | φ FO-property}. (2)

We are interested in the geometry of the topological closure L(d) (i.e. the
union of the points in the set and its limit points). Observe that L(d) is a
symmetric subset of the interval [0, 1] (i.e, p ∈ L(d) if and only if 1− p ∈ L(d)),
since the negation of an FO-property is also an FO-property.

The main result of the paper is the following.

Theorem 1.3. Suppose that d satisfies Assumption 1.1. Define

pacyc(d) := lim
n→∞

P(Gn(dn) is acyclic). (3)

Then, L(d) is a finite union of closed intervals, and

(1) if pacyc(d) < 1/2, then L(d) ̸= [0, 1];

(2) if pacyc(d) ≥ 1/2, then L(d) = [0, 1].

We devote the rest of the introduction to discuss some aspects of our results.

Remark 1.4 (Discussion on Assumption 1.1). Assumption (i) is necessary in
order to define G(d). Assumptions (ii) and (iii) allow us to study Gn(dn) by
looking at the limit degree distribution D. They imply that the average degree
and the second moment of the degree sequence are bounded in probability, which
in particular imply that the maximum degree is o(

√
n). These two assumptions

are usual in the setting of random graphs with given degree sequence. The
infinite degree variance case exhibits a very different behaviour (see e.g. [13]) and
it remains as an open problem to prove if in such case G(d) has a convergence
law for the FO language. Finally, Assumption (iv) rules out the existence of
vertices with low-frequency degrees. Otherwise such vertices would pose an
obstacle to a convergence law for FO logic on graphs: for instance, consider dn

containing a single vertex of degree 3 for odd n, and none for even n, and φ
the FO-property “the graph contains a vertex of degree 3”, then p(φ,d) does
not exist. For our purposes, assumption (iv) could be weakened replacing “for
all n” by “for all sufficiently large n”. However, we use the stronger version for
convenience.
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Remark 1.5 (The configuration model). As it is usually the case, instead of
studying directly the graph Gn(dn) we will study CMn(dn), a related random
(multi)graph known as the configuration model, and introduced in Section 2.
Theorems 1.2 and 1.3 also hold for CM(d), as it will be discussed later.

Remark 1.6 (Probability of being acyclic). The cycle distribution and the
limit probability that Gn(dn) (or CMn(dn)) is acyclic have been studied in
the literature (see Section 4.1). It is well-known that, provided that d satis-
fies Assumption 1.1, the number of cycles of length k converges to a Poisson
variable with parameter νk/(2k), and they are asymptotically independent (see
Lemma 4.3). Here, ν is a limit parameter defined on d, see (7), which in fact is
a fundamental parameter of random graphs with a given degree sequence. For
instance, the phase transition for the existence of a giant component is located
at ν = 1 [15, 22]. As a consequence, pacyc(d) exists and only depends on ν:

pacyc(d) =
√
1− ν · e ν

2+
ν2

4 for ν ∈ (0, 1), (4)

and pacyc(d) = 0 if ν ≥ 1 (see Lemma 4.6). In (4), the term
√
1− ν accounts

for the probability that CMn(dn) is acyclic: it has no cycles of length k, for
all k ≥ 1. However, our object of interest is Gn(dn) which, by definition, is
simple: it has neither cycles of length one (loops) nor cycles of length two

(multiedges). The correction terms eν/2 and eν
2/4 can be thought as deducting

the contribution of loops and multiedges, respectively, from the configuration
model acylic probability.

Alternatively, taking the Taylor series of ln(
√
1− ν), we can rewrite (4) as

pacyc(d) = exp

−
∑
k≥3

νk

2k

 for ν ∈ (0, 1). (5)

This is not a closed-form expression but it has a more straightforward interpre-
tation: Gn(dn) is acyclic if and only if it has no cycles of length three (term

e−ν3/6), no cycles of length four (term e−ν4/8), and so on. In particular, note
that pacyc(d) ∈ (0, 1) for ν ∈ (0, 1).

The second part of Theorem 1.3 locates a threshold at pacyc(d) = 1/2. Let
ν0 ∈ [0, 1] be the unique root of

√
1− ν · e ν

2+
ν2

4 =
1

2
. (6)

Indeed, the previous equation has exactly one solution in [0, 1] as its LHS is
monotonically decreasing in this interval and evaluates to 1 at ν = 0 and to
0 at ν = 1. Numerically, we obtain ν0 ≈ 0.9368317, which coincides with the
threshold value for c in Gn(c/n) obtained in [17]. To our best knowledge, the
value ν0 has not been identified yet as a threshold for any other property of
Gn(dn).
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2 Preliminaries

2.1 Notation

From now on we fix d that satisfies Assumption 1.1. We introduce some addi-
tional notation that will be used throughout the paper. For k ≥ 0 and n ∈ N,
define λn,k := P(Dn = k) and λk := P(D = k), where Dn is the degree dis-
tribution corresponding to dn and D is the limiting degree distribution (which

exists by Assumption 1.1). Additionally, define λ̂n := 1 − λn,0 − λn,1, and

λ̂ := limn→∞ λ̂n. Similarly, define n̂ := | {i ∈ [n] | dn,i ≥ 2} | = nλ̂n, the num-
ber of vertices whose degree in dn is at least 2.

Define mn :=
∑

i∈[n] dn,i, twice the number of edges in Gn(dn). Define

ρn,k := E [Dn(Dn − 1) . . . (Dn − k + 1)] and ρk := E [D(D − 1) . . . (D − k + 1)],
the k-th factorial moments of Dn and D, respectively. By Assumption 1.1.(iii),
limn→∞ ρn,k = ρk for k = 1, 2. Define

ν := ν(d) =
E [D(D − 1)]

E [D]
=

ρ2
ρ1

. (7)

By the convergence of the first and second moments, if νn := E[Dn(Dn−1)]
E[Dn]

, then

limn→∞ νn = ν.
As we already indicated in Remark 1.6, ν plays a crucial role in the cycle

distribution and the shape of the limit probability set.

2.2 Multigraphs

A multigraph G is a pair (V (G), E(G)) where V (G) is its vertex set, and E(G)
is its edge set, a multiset of unordered pairs {u, v} where u, v ∈ V (G). We
allow the possibility that u = v, in which case the edge is called a loop. Given
u, v ∈ V (G), the multiplicity of the edge with endpoints u, v is the number of
pairs {u, v} in the multiset E(G). The degree deg(v) of a vertex v ∈ V (G) is
the number of edges {u, v} ∈ E(G) with u ̸= v, plus twice the number of loops
{v, v} ∈ E(G).

If G,H are multigraphs, an H-copy in G is a sub-multigraph H ′ ⊆ G that
is isomorphic to G. In the context of multigraphs, k-cycles are defined as usual
for k ≥ 3. For k = 2, a 2-cycle consists of two vertices plus two edges joining
them, and for k = 1, a 1-cycle is just a vertex with a loop attached to it.

Define the excess of a multigraph (or graph) G to be ex(G) := |E(G)| −
|V (G)|. A connected graph G is unicylic if ex(G) = 0, or, equivalently, when
it has exactly one cycle. A fragment is a disjoint union of unicylic components.
The fragment Frag(G) of a multigraph (or graph) G is the union of its uni-
cyclic components. We call a fragment simple if it contains neither loops nor
multiedges, or, in other words, if it contains no cycles of length smaller than 3.

Given a multigraph G, its number of half-edge automorphisms is

auth.e.(G) := aut(G)2ℓ
∏

u,v∈V (G)

m(u, v)!, (8)
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where ℓ is the number of loops in G, and m(u, v) denotes the multiplicity of
{u, v} in E(G). In this way, auth.e.(Ck) = 2k, where Ck is a k-cycle and k ≥ 1.
Informally, auth.e.(G) is the number of half-edge permutations inG that preserve
both incidence to the same vertex and the matching between half-edges.

Other notions related to graphs extend to multigraphs in the natural way.

2.3 Configuration Model

We study random graphs with given degree sequence through the so-called con-
figuration model, introduced by Bollobás [1, 2], which instead yields a random
multigraph with the desired degree sequence. See e.g. [12, 13] for the basic
properties of the model.

Given a degree sequence dn of length n, the configuration model CMn(dn)

is a uniform random matching of [mn] (formally, CMn(dn) ⊆
(
[mn]
2

)
), where

we recall that mn =
∑

i∈[n] di. We refer to the elements e ∈ [mn] as half-

edges. We say that a half-edge e ∈ [mn] is incident to a vertex v ∈ [n] if∑
u<v du < e ≤

∑
u≤v du. In other words, the first d1 half-edges belong to vertex

1, the following d2 belong to vertex 2, and so on. The underlying multigraph
of CMn(dn) has vertex set [n] and the number of edges between two different
vertices v1, v2 ∈ [n] is the number of pairs {h1, h2} in the matching CMn(dn)
where h1, h2 are incident to v1, v2, respectively.

In the following, we identify CMn(dn) with its underlying multigraph. Infor-
mally, we obtain the multigraph CMn(dn) by attaching dv half edges to each ver-
tex v ∈ [n], and matching these half-edges randomly afterwards. For a sequence
of degree sequences d = (dn)n∈N, we denote by CM(d) = (CMn(dn))n∈N.

The probability that CMn(dn) = G for a fixed multigraph G with degree
sequence dn depends only on its number of loops and the multiplicity of its
edges. In particular, if d is feasible, conditioning CMn(dn) on being simple (i.e.
the absence of loops and multiedges) results in Gn(dn). It is thus natural to
compute the probability that CMn(dn) is simple. The following theorem gives
an answer for sequences that satisfy our assumption (in fact, the theorem holds
in a slightly more general setting). Recall the definition of ν in (7).

Theorem 2.1 (Bollobás [2]; Janson [14, Theorem 1.1]). Let d satisfies Assump-
tion 1.1. Then

lim inf
n→∞

P(CMn(dn) is simple) = e−
ν
2−

ν2

4 > 0. (9)

We will revisit this theorem in forthcoming sections.
Let us also briefly recall the role of ν in the phase transition of CM(d).

Under Assumption 1.1, ν determines the appearance of a giant component in
CM(d) [15, 22]. Namely, CMn(dn) a.a.s. contains a linear order component if
and only if ν > 1.
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2.4 Exchange of Limit and Sum Operators

Some of our results rely on the exchange of limit and sum operations. We recall
the notion of tight sequence and an equivalent characterization.

Definition 2.2. Let (fn)n∈N be a sequence of functions fn : S → [0,∞) where
S is a countable set. The sequence (fn)n∈N is tight if for every ϵ > 0 there exists
a finite T ⊂ S satisfying

∑
s̸∈T fn(s) < ϵ for all n ∈ N.

Lemma 2.3. Let (fn)n∈N be a sequence of functions fn : S → [0,∞) where S
is a countable set. Suppose that

(1) for each s ∈ S, f(s) = limn→∞ fn(s) exists and is finite,

(2)
∑

s∈S f(s) is finite.

Then limn→∞
∑

s∈S fn(s) =
∑

s∈S f(s) if and only if (fn)n∈N is tight.

2.5 Probability preliminaries

In order to study the small cycle distribution of CM(d) we will need the next
auxiliary result [3, Theorem 1.23].

Theorem 2.4 (Method of Moments for Poisson random variables ). Let k ∈
N. For each n ∈ N, let Xn,1, . . . , Xn,k be random variables over the same
measurable space. Suppose that there are real positive constants λ1, . . . , λk such
that for all a1, . . . , ak ∈ N

lim
n→∞

E

[
k∏

i=1

(
Xn,i

ai

)]
=

k∏
i=1

λai
i

ai!
.

Then (Xn,1, . . . , Xn,k) converges in distribution to a vector of independent Pois-
son random variables with parameters λ1, . . . , λk as n → ∞.

2.6 Sets of Partial Sums

Given a convergent series
∑

n∈N pn whose terms are non-negative, its set of
partial sums is defined as {

∑
n∈A pn : A ⊆ N} ⊆ [0,+∞). As part of the proof

of Theorem 1.3 we need to analyze the geometry of some of these sets. Our tool
for this matter is the following classical result conjectured by Kakeya [16] and
later proven in [23].

Lemma 2.5 (Kakeya’s Criterion). Let
∑

n∈N pn be a convergent series of non-
negative real numbers such that pn ≥ pn+1 for all n ∈ N. Then the following
are equivalent:

(1) pi ≤
∑

j>i pj for all i ∈ N.

(2) {∑
n∈A

pn : A ⊆ N

}
=

[
0,
∑
n∈N

pn

]
.
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If the condition (1) only holds for all values of i large enough, then the set{∑
n∈A pn : A ⊆ N

}
is a finite union of intervals.

3 Outline of the proof of Theorem 1.3

Here we briefly outline the proof of our main result. Throughout the proof, we
will suppose that d satisfies Assumption 1.1. For the sake of conciseness, this
will be implicitly assumed in all our statements.

The first step towards the result is to understand the distribution of short
cycle in Gn(dn), which is done in Section 4. This section contains some already
known results that are dispersed in the literature and a secondary goal is to
collect them all in a single document. The most important conclusion of this
part is Lemma 4.6, which states that the asymptotic probability that Gn(dn) is
acyclic admits a nice expression in terms of the parameter ν:

pacyc(d) =
√
1− ν · e ν

2+
ν2

4 .

The study of the cycle structure gives access to the distribution of the unicyclic
components of Gn(dn), which form the fragment of the random graph. This
is done in Section 5. We obtain an expression for the probability a particular
fixed graph is the fragment of Gn(dn) (Corollary 5.2), and show that its size
distribution is tight, provided that ν < 1 (Corollary 5.8).

From here on, our strategy is similar to the one used in [17] to deal with the
binomial random graph Gn(c/n), however, the probabilistic arguments here are
more convoluted.

We split the proof of Theorem 1.3 into two parts. In the first part, developed
in Section 6, we show that L(d) consists of a finite union of closed intervals
when 0 < ν < 1 (Lemma 6.4). Theorem 6.1 establishes that the subcritical
regime the random graph fragment determines whether a given FO-property
is satisfied or not. This is used to prove that L(d) is the set of partial sums
of fragment probabilities (Theorem 6.2). The desired result is obtained by
Kakeya’s Criterion. Compared to the approach in [17], fragment probabilities
have a more complex structure that heavily depends on the full degree sequence
dn. This rules out the possibility of using specific examples for fragments in our
bounds, which was the strategy in the binomial case. We overcome this difficulty,
roughly, by classifying fragments into classes depending on the amount of cycles
of each length they contain, and obtaining bounds for each whole class, rather
than for individual fragments.

In the second part, developed in Section 7, we establish a sharp threshold
phenomenon at ν = ν0 for the property that Gn(dn) has a limit probability
set for FO-properties that is dense in the unit interval, i.e. L(d) = [0, 1]. The
constant ν0 is defined as the unique value of ν such that a random graph with
ν = ν0 is acyclic with probability exactly 1/2 (see Remark 1.6). This is done
in Lemma 7.1 and its proof is a two-fold application of Kakeya’s Criterion,
distinguishing the cases 0 < ν < ν0 and ν ≥ ν0.
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4 Cycle distribution

In this section we study the distribution of short cycles in CM(d). We stress
that most of the results presented here are already known and follow from well-
established techniques. However these results are scattered through the litera-
ture, and this section aims to provide a self-contained compendium of the cycle
distribution in the configuration model. We will prove it under Assumption 1.1,
but it is worth noticing that the assumption (iv) is not needed for these results
to hold (and similarly in Section 5).

Lemma 4.1. Let H be a multigraph whose minimum degree is at least 2. Let
h = |V (H)|, hi = |{v ∈ V (H) : deg(v) = i}|, and ℓ = |E(H)|. Let Xn(H) be
the number of H-copies in CMn(dn). Then

E [Xn(H)] ≤ Ξn(H)ehξn , (10)

where

Ξn(H) :=
(n̂)h

auth.e.(H)λ̂h
n

∏ℓ
i=1(mn − 2i+ 1)

∏
i≥0

ρhi
n,i, (11)

and ξn = o(1) is a sequence depending only on ∆n and n.

Remark. It is significantly easier to prove (10) if we replace Ξn(H) by

Ξ′
n(H) :=

nh

auth.e.(H)
∏ℓ

i=1(mn − 2i+ 1)

∏
i≥0

ρhi
n,i, (12)

However, the stronger bound obtained with Ξn(H) will be needed to show the
tightness of the random variable counting the number of cycles in the configu-
ration model.

Proof. We estimate the number of possible sub-configurations H ′ isomorphic
to H. Fix a labelling v1, . . . , vh of V (H). In order to choose H ′, we begin by
picking the vertices v′1, . . . , v

′
h forming V (H ′), each one labeled after a vertex in

H.
In order to completely determine H ′, we need to pick a list of deg(vi) half-

edges incident to v′i for each i ∈ [h]. This yields a total of
∏

i∈[h](ai)deg(vi) choices

of half-edges for H ′, where ai = dv′
i
. Note that this is 0 unless dv′

i
(n) ≥ deg(vi)

for all i ∈ [h]. There are exactly auth.e.(H) ways of choosing vertices and half-
edges that yield the same sub-configuration H ′. Hence, the total number of
possible sub-configurations of CMn(dn) isomorphic to H is given by

1

auth.e.(H)

∑
a1,...,ah∈N

∑
{v′

1,...,v
′
h}∈(

[n]
h )

dv′
i
=ai, i∈[h]

∏
i∈[h]

(ai)deg(vi).

In the sum, we first pick the degrees a1, . . . , ah of v′1, . . . , v
′
h before choosing

the vertices themselves.
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Given any choice of a1, . . . , ah, we define b1, . . . , bk as the different numbers
appearing in a1, . . . , ah, in increasing order. Observe that k ≤ ∆n.

Given i ∈ [k] define ci as the number of indices j ∈ [h] such that aj = bi.
Then

∑
{v′

1,...,v
′
h}∈(

[n]
h )

dv′
i
=ai,i∈[h]

∏
i∈[h]

(ai)deg(vi) =

∏
i∈[k]

∏
0≤j<ci

(nbi − j)

 ∏
i∈[h]

(ai)deg(vi). (13)

We going to apply two technical lemmas, whose statement and proof can be
found in Appendix A. These will allow us to replace the expression inside the
parenthesis on the RHS of (13) by something more convenient. Let αi = nbi

and βi = ci for all i ∈ [k] with α =
∑

i∈[k] αi and β =
∑

i∈[k] ci = h. By
Lemma A.1,

∏
i∈[k]

∏
0≤j<ci

(nbi − j) ≤ (α)h

∏
i∈[h]

nai

α

 ∏
h−k+1≤j<h

α

α− j


≤ (n̂)h

∏
i∈[h]

nai

n̂

 ∏
h+1−t≤j<h

n̂

n̂− j

 ,

where t = min(∆n, h+ 1). For the second inequality we used that α ≤ n̂ (since
H has minimum degree 2) and that k ≤ t. Applying Lemma A.2 with N = n̂
and a = h, we obtain

∏
i∈[k]

∏
0≤j<ci

(nbi − j) ≤ (n̂)h

∏
i∈[h]

nai

n̂

 ehξn = (n̂)hλ̂
−h
n

∏
i∈[h]

nai

n

 ehξn ,

for some sequence ξn = o(1) that only depends on n and ∆n.
Replacing this last inequality into (13) we get

∑
{v′

1,...,v
′
h}∈(

[n]
h )

dv′
i
=ai,i∈[h]

∏
i∈[h]

(ai)deg(vi) ≤ (n̂)hλ̂
−h
n

∏
i∈[h]

nai

n
(ai)deg(vi)

 eξnh.

Summing over all possible choices of a1, . . . , ah, the number of possible sub-
configurations of CMn(dn) isomorphic to H is bounded from above by

(n̂)h

auth.e.(H)λ̂h
n

∏
i∈[h]

ρn,deg(vi)

 eξnh.
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Finally, the probability that a given copy ofH is realized is 1/
∏

i∈[ℓ](mn−2i+1).
We conclude that

E [Xn(H)] ≤ (n̂)h

auth.e.(H)λ̂h
n

∏
i∈[ℓ](mn − 2i+ 1)

∏
i∈[h]

ρn,deg(vi)

 eξnh

= Ξn(H)eξnh.

Lemma 4.2. Let H be a multigraph. Using the notation of Lemma 4.1, it holds
that

E [Xn(H)] = (1 +O(1/n))
nh

mℓ
n

∏
i≥0

ρhi
n,i.

Proof. Recall that we can write

E [Xn(H)] =
1

auth.e.(H)
∏

i∈[ℓ](mn − 2i+ 1)

∑
a1,...ah∈N

∑
{v′

1,...,v
′
h}∈(

[n]
h )

dv′
i
=ai,i∈[h]

∏
i∈[h]

(ai)deg(vi).

It holds that∏
i∈[h]

(nai − h)(ai)deg(vi) ≤
∑

{v′
1,...,v

′
h}∈(

[n]
h )

dv′
i
=ai,i∈[h]

∏
i∈[h]

(ai)deg(vi) ≤
∏
i∈[h]

nai(ai)deg(vi).

Hence, we obtain the desired result

E [Xn(H)] = (1 +O (1/n))
1

auth.e.(H)mℓ
n

∑
a1,...,ah∈N

∏
i∈[h]

nai
(ai)deg(vi)

= (1 +O (1/n))
nh

auth.e.(H)mℓ
n

∏
i∈[h]

∑
ai∈N

nai

n
(ai)deg(vi)

= (1 +O (1/n))
nh

auth.e.(H)mℓ
n

∏
i∈[h]

ρhi

n,deg(vi)
.

From the previous lemma, we recover a classic result on random graphs.

Lemma 4.3. Let Xn,k be number of k-cycles in CMn(dn). Then, for any finite
collection k1, . . . , kl, the variables Xn,k1

, . . . , Xn,kl
converge in distribution to

independent Poisson variables whose respective means are ξki := νki/2ki. In
particular,

lim
n→∞

P(CMn(dn) is simple) = e−
ν
2−

ν2

4 . (14)
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Proof. We prove the first part of the statement, the second part follows easily
from it. We assume ρ2 > 0. Otherwise, by Assumption 1.1.(iv), all vertices
have degree 0 or 1 and the result follows trivially. By the method of moments
(Theorem 2.4), it suffices to show that for any a1, . . . , al ∈ N,

lim
n→∞

E

[
l∏

i=1

(
Xn,ki

ai

)]
=

l∏
i=1

ξai

ki

ai!
. (15)

We say that a multigraph G is a non-degenerate union of unlabeled multigraphs
H1, . . . ,Ht if G contains a copy H ′

i of Hi for each i ∈ [t], V (G) = V (H ′
1) ∪

· · · ∪ V (H ′
t) (note that this union is not necessarily disjoint), and the Hi are

pairwise different (note that the H ′
i can share some edges). Let H be the class

of all unlabeled multigraphs that are non-degenerate unions of a1 copies of Ck1 ,
a2 copies of Ck2 , and so on. Let H∗ ∈ H be the graph formed by the disjoint
union of the corresponding cycles. Note that ex(H∗) = 0 and ex(H) > 0 for
all other H ∈ H. Given H ∈ H, let Yn(H) be the number of H-copies in

CMn(dn). The LHS in (15) amounts to
∑

H∈H
auth.e.(H)
auth.e.(H∗)

E [Yn(H)]. We show

that asymptotically only E [Yn(H∗)] contributes to the value of this sum, and
this expectation has the desired value. Using Lemma 4.2 we get

E [Yn(H)] = (1 +O(1/n))
nh
∏

i∈N(ρn,i)
hi

(mn)ℓ auth.e.(H)
= O

n− ex(H)
∏
i≥0

ρhi
n,i

 , (16)

where h = |V (H)|, ℓ = |E(H)|, and hi = |{v ∈ V (H) : deg(v) = i}|.
Let H ∈ H be an arbitrary multigraph different from H∗. We show that

E [Yn(H)] = o(1). By Assumption 1.1, ∆n = o(n1/2) and ρn,2 = O(1). The
former implies that ρn,i = o(n1/2ρn,i−1) for all i ≥ 2, and then ρn,i = o(n(i−2)/2)
for all i ≥ 3. As H ̸= H∗, it contains some vertex of degree at least 3 and we
obtain ∏

i≥0

ρhi
n,i = o

∏
i≥3

nhi(i−2)/2

 = o
(
nex(H)

)
, (17)

where we used that
∑

i≥3 hi(i − 2) =
∑

i≥0 hi(i − 2) = 2 ex(H), as H has
minimum degree at least 2. Plugging this last equation into (16), we obtain
that E [Yn(H)] = o(1).

Now consider the case H = H∗. Since H∗ is 2-regular and auth.e.(H∗) =∏l
i=1 ai!(2ki)

ai , Lemma 4.2 yields

E [Yn(H∗)] =

l∏
i=1

ξai

ki

ai!
+ o(1), (18)

using that mn/n = ρn,1. Combining (16)–(18), we obtain the first part of the
lemma

lim
n→∞

E

[
l∏

i=1

(
Xn,ki

ai

)]
= lim

n→∞
E [Yn(H∗)] =

l∏
i=1

ξai

ki

ai!
.

12



Once we have determined the distribution of short cycles, we proceed to
study the probability of acyclicity. Recall that ν = 1 is the threshold for the
existence of a giant component. If ν ≥ 1, the largest component w.h.p. contains
an unbounded number of cycles and pacyc(d) = 0. Thus we restrict to the
subcritical case ν < 1.

Lemma 4.4. Fix k ∈ N. Let Xn,k count the number of k-cycles in CMn(dn).
Assume that ν < 1. Then the sequence (E [Xn,k])n∈N is tight.

Proof. Clearly, adding or removing isolated vertices to CMn(dn) does not affect
the result, so without loss of generality we may assume λ0 = 0. If λ1 = 1, by
Assumption 1.1.(iv) all vertices have degree 1 and the result follows trivially
as there are no cycles in the model. Also, note that λ1 ̸= 0, as this together
with λ0 = 0 would imply that ν ≥ 1. So we assume that 0 < λ1 < 1. From
Lemma 4.1 it follows that

E [Xn,k] ≤
(n̂)k

2kλ̂k
n

∏k
i=1(mn − 2i+ 1)

ρkn,2e
kξn (19)

for all n, k ∈ N, where the sequence ξn = o(1) depends only on n. Observe that
mn ≥ 2n̂ + λn,1n, so mn − 1 ≥ 2n̂ for sufficiently large n. This implies that

(n̂−s)/(mn−2s−1) ≤ n̂/mn = λ̂n/ρn,1 for all 0 ≤ s < n. Thus, for sufficiently
large n,

E [Xn,k] ≤
(νne

ξn)k

2k
.

Choose ν′ ∈ (ν, 1). As limn→∞ νne
ξn = ν, there is some value n′ ∈ N such that

νne
ξn < ν′ for all n ≥ n′. Then

E [Xn,k] ≤
(ν′)k

2k

for all n ≥ n′. As the sum
∑

k≥1
(ν′)k

2k converges, this proves the result.

Corollary 4.5. Let Zn count the cycles in CMn(dn). Assume that ν < 1.
Then,

lim
n→∞

E [Zn] = −1

2
ln (1− ν). (20)

Proof. Let Xn,k count the number of k-cycles in CMn(dn). In Lemma 4.3 we
showed that E [Xn,k] = νk/2k + o(1). By Lemma 2.3 and Lemma 4.4,

lim
n→∞

E [Zn] = lim
n→∞

∑
k≥1

E [Xn,k] =
∑
k≥1

lim
n→∞

E [Xn,k] = −1

2
ln (1− ν). (21)
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Lemma 4.6. Assume ν < 1. Let a = (aℓ)ℓ∈N be a sequence of non-negative
integers such that

∑
ℓ∈N aℓ < ∞. The following hold true:

(1) Let An be the event that CMn(dn) contains exactly aℓ ℓ-cycles for all
ℓ ≥ 1. Then

lim
n→∞

P(An) =
√
1− ν

∏
ℓ∈N

(νℓ/2ℓ)aℓ

aℓ!
.

In particular,

lim
n→∞

P(CMn(dn) is acyclic) =
√
1− ν.

(2) Let Bn be the event that Gn(dn) contains exactly aℓ ℓ-cycles for all ℓ ≥ 3.
Then

lim
n→∞

P(Bn) =
√
1− ν · e ν

2+
ν2

4

∏
ℓ≥3

(νℓ/2ℓ)aℓ

aℓ!
.

In particular,

lim
n→∞

P(Gn(dn) is acyclic) =
√
1− ν · e ν

2+
ν2

4 .

Proof. We will prove (1). Statement (2) follows from the fact that Gn(dn) is
distributed like CMn(dn) conditioned on the absence of 1-cycles and 2-cycles,
whose probability we computed in Lemma 4.3. Let Xn,k count the number of
k-cycles in CMn(dn) and ξk = νk/2k. Let ϵ > 0 be arbitrarily small. It suffices
to prove that, if n is large enough,∣∣∣∣∣P(An)−

√
1− ν

∏
ℓ∈N

ξaℓ

ℓ

aℓ!

∣∣∣∣∣ < ϵ. (22)

Let K be a sufficiently large constant satisfying both∣∣∣(∏K
k=1 e

−ξk · ξ
ak
k

ak!

)
−
(√

1− ν
∏

k≥1
ξ
ak
k

ak!

)∣∣∣ < ϵ/3 (23)

and

P
(∑

k>K Xn,k > 0
)
< ϵ/3, for all n ∈ N. (24)

The property in (23) can be attained for a large K because, inside the
absolute value, for ν < 1, the right term contains the limit (as K → ∞) of the
left term. The existence of K satisfying (24) follows from (E [Xn,k])n∈N being
tight for all k ∈ N, as shown in Corollary 4.5, and Markov’s inequality. Indeed,
by tightness, there is some K for which

∑
k>K E [Xn,k] < ϵ/3 uniformly in n,

and then P
(∑

k>K Xn,k > 0
)
≤ E

[∑
k>K Xn,k

]
≤ ϵ/3 uniformly in n as well.

We can write An =
⋂

k≥1{Xn,k = ak}, and P(An) = limk→∞ pn,k, where

pn,k = P(
⋂k

i=1{Xn,i = ai}). The intersection bound and (24) imply that

14



P(An) > pn,K − ϵ/3 for all n ∈ N. Moreover, the sequence (pn,k)k≥1 is mono-
tonically decreasing, so P(An) ≤ pn,K for all n ∈ N. It follows that,

|P(An)− pn,K | < ϵ/3 (25)

However, by Lemma 4.3, for n large enough∣∣∣∣∣pn,K −
K∏

k=1

e−ξk
ξak

k

ak!

∣∣∣∣∣ < ϵ/3.

Using (23) here yields (22) and completes the proof.

We finally show that there are no complex components (i.e., components
with positive excess).

Theorem 4.7. Assume ν < 1. Then a.a.s there are no connected components
containing more than one cycle in CMn(dn).

Proof. As in the proof of Lemma 4.4, we will assume that λ0 = 0 and λ1 < 1,
which in turn imply that ρ1 > 1 and n− i/mn − 2i+ 1 ≤ 1/ρn,1 for sufficiently
large n ∈ N for all i ≥ 1.

The configuration CMn(dn) has two cycles lying in the same component if
and only if it has some subgraph belonging to one of the following classes:

(I) H
(1)
i,j,k : An i-cycle and a j-cycle, disjoint, with a path of length k ≥ 1

joining a vertex from each cycle.

(II) H
(2)
i,j,k : An i-cycle and a j-cycle sharing a path of length k ≥ 1.

(III) H
(3)
i,j : An i-cycle and a j-cycle sharing a single vertex.

We show that w.h.p. none of these subgraphs appear in CMn(dn) using the

first moment method. Let us consider Class-(I) first. Let X
(1)
n;i,j,k count the

number of copies of H
(1)
i,j,k in CMn(dn). The multigraph H

(1)
i,j,k has i + j + k

edges and h = i+j+k−1 vertices, among which two have degree 3 and the rest

have degree 2. Observe that if h > n̂ then E
[
X

(1)
n;i,j,k

]
= 0. Suppose otherwise.

Choose some ν′ ∈ (ν, 1). By Lemma 4.2, for sufficiently large n, independently
of h

E
[
X

(1)
n;i,j,k

]
≤ (n̂)hλ̂n∏

s∈[h+1](mn − 2s+ 1)
ρh−2
n,2 ρ2n,3e

hξn

≤ (νn)
h ∆2

n

(mn − 2h− 1)
ehξn

≤ (ν′n)
h ∆2

n

(λn,1n− 1)
, (26)

where in the second inequality we have used that ρn,3 ≤ ∆nρn,2.
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Let X
(1)
n;h be the sum of all variables X

(1)
n;i,j,k with i+j+k−1 = h. There are

at most h2 such choices for i, j, k, so E
[
X

(1)
n;h

]
= O(h2(ν′n)

h∆2
n/n). It follows

that ∑
h≥3

E
[
X

(1)
n;h

]
= O

(∆2
n

n

∑
h≥3

h2(ν′n)
h
)
= O

(∆2
n

n

)
= o(1).

Using Markov’s inequality we obtain that w.h.p. no Class-(I) subgraph occurs
in CMn(dn). In an analogous way, it can be shown that the expected numbers
of Class-(II) and Class-(III) subgraphs in CMn(dn) are O

(
∆2

n/n
)
, and w.h.p.

CMn(dn) contains no subgraph from those subclasses either. This proves the
result.

4.1 Previous results

In this section we included a self-contained description of the cycle distribution
on CM(d) and the probability CM(d) and G(d) are acyclic. As we explained,
most of these results were already known in the literature and our aim was to
compile them in a single document. To conclude this section, we give references
where some of these results can be found. Note that all the results that we refer
to below, hold w.h.p. and under similar conditions on d as Assumption 1.1,
unless otherwise stated.

The expected number of copies of a given small subgraph (Lemma 4.2),
as well as the probability a particular cycle appears, are well-studied in the
literature [4]. The result stated here can be found with a similar proof in the
unpublished notes by Bordenave [5, Theorem 2.4]. The refined upper bound
(Lemma 4.1), needed to show tightness (Lemma 4.4), was not available in the
literature, to our best knowledge.

For graphs other than trees or unicyclic ones, their expected number tends to
zero as n tends to infinity. McKay [21] studied the probability of small subgraph
appearance on dense random graphs with given degrees.

That the joint distribution of cycles up to length k converges to a vector of
independent Poisson random variables is well known. This was originally proved
in regular setting by Bollobás [2], and, independently, by Wormald [24]. The
extension to the configuration model can be found in [5, Theorem 2.18] and [12,
Exercise 4.16]. Determining the probability that the configuration model is
simple is one of earliest results in the area [1, 2], see [14] for the version in
Theorem 2.1.

In the subcritical regime, the result that all cycles have length bounded in
probability (Corollary 4.5), which is equivalent to the tightness exhibited in
Lemma 4.4, can be found in [6, Lemma 5.3]. The existence of no complex com-
ponents in CMn(dn), given by Theorem 4.7, can be found in [10]. It is worth
stressing that the proof strategy there is quite different: they analyze a process
that exposes a connected component in CMn(dn), vertex by vertex, using mar-
tingale concentration inequalities, which requires additional constraints in the
maximum degree, with respect to Assumption 1.1.
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5 Fragment Distribution

In this section we study the distribution of unicyclic components of CMn(dn)
when ν < 1. To our best knowledge, this distribution has not been studied yet.

Let Frag∗n = Frag(CMn(dn)) and Fragn = Frag(Gn(dn)) be the subgraphs
composed by the union of all unicyclic connected components in CMn(dn) and
Gn(dn), respectively.

Theorem 5.1. Suppose ν < 1. If H is a fragment, then

lim
n→∞

P(Frag∗n ≃ H) =

√
1− ν

auth.e.(H)

∏
i≥0

(
λii!

ρ1

)hi

,

where hi = |{v ∈ V (H) : deg(v) = i}|.

Proof. Let h = |V (H)| and
V (H) = {v1, . . . , vh}. For each vi ∈ V (H), fix some ordering of the half-

edges incident to vi. Define Hn as the set of possible isolated H-copies in
CMn(dn). In order to pick a copyH ′ ∈ Hn, we first select the vertices v

′
1, . . . , v

′
h.

As we want the copy to be isolated, we require dv′
i
= deg(vi) for all i ∈ [h]. In

order to completely determine H ′ we give an ordering of the half-edges incident
to each vertex v′i. Afterwards, half-edges should be matched according to the
half-edge orderings defined for H. Observe that there are exactly auth.e.(H)
ways of picking vertices and half-edge orderings that result in the same subcon-
figuration H ′. Hence,

|Hn| =
∏

i≥0(ni)hi(i!)
hi

auth.e.(H)
. (27)

Given H ′ ∈ Hn, let An(H
′) be the event

that H ′ ⊆ CMn(dn) and CMn(dn) \ V (H ′) is acyclic. Observe that the
events An(H

′) are disjoint. Let Pn be the event that no component in CMn(dn)
contains more than one cycle. Then the event (Frag∗n ≃ H)∩Pn coincides with
the union of the events An(H

′) for all H ′ ∈ Hn. Thus, by Theorem 4.7,

P(Frag∗n ≃ H) = o(1) +
∑

H′∈Hn

P(An(H
′)). (28)

Recall that dv′
i
= deg(vi) for all H ′ ∈ Hn and all i ∈ [h]. Thus, by symmetry,

the probability of An(H
′) is the same for all H ′ ∈ Hn. Fix an H-copy H ′ ∈ Hn

for each n ∈ N. Combining (27) and (28) we obtain

P(Frag∗n ≃ H) =

∏
i≥0(ni)hi

(i!)hi

auth.e.(H)
P(An(H

′)) + o(1). (29)

Let us examine now the probability of An(H
′). Let Ĝn = CMn(dn)[[n]\V (H ′

n)].
As H is a fragment, by definition

P(An(H
′)) =

1∏h
i=1(mn − 2i+ 1)

P
(
Ĝn is acyclic

∣∣∣ H ′ ⊆ CMn(dn)
)
. (30)
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Let d̂n−h be the degree sequence obtained by removing the vertices of V (H ′
n)

from [n] and relabeling the remaining vertices as [n − h]. Note that (Ĝn |
H ′

n ⊆ CMn(dn)) ∼ CMn−h(d̂n−h). Clearly, the degree sequence d̂ satisfies
Assumption 1.1. Moreover, it is easy to see that the first and second moments
of the related degree distribution have the same limits as those of d (that is, ρ1
and ρ2) as h = O(1). By Lemma 4.6,

P
(
Ĝn is acyclic

∣∣∣ H ′
n ⊆ CMn(dn)

)
= P

(
CMn−h(d̂n−h) is acyclic

)
=

√
1− ν + o(1).

(31)

Putting (29), (30) and (31) together, we conclude the proof of the theorem

P(Frag∗n ≃ H) =

√
1− ν

∏
i≥0(ni)hi

(i!)hi

auth.e.(H)
∏h

i=1(mn − 2i+ 1)
+ o(1)

=

√
1− ν

auth.e.(H)

∏
i≥0

(
λii!

ρ1

)hi

+ o(1).

(32)

The following corollary states that the fragment of Gn(dn) is asymptotically
distributed like the fragment of CMn(dn), ignoring the components containing
loops or double edges.

Corollary 5.2. Assume that ν < 1. Let G be a simple fragment. Then

lim
n→∞

P(Fragn ≃ G) =

√
1− ν · e ν

2+
ν2

4

aut(G)

∏
i≥0

(
λii!

ρ1

)gi

,

where gi = |{v ∈ V (G) : deg(v) = i}|.

Proof. Let An be the event that CMn(dn) is simple (i.e., it contains neither
loops nor multiple edges). By definition,

P(Fragn ≃ G) = P(Frag∗n ≃ G | An) =
P(Frag∗n ≃ G ∩ An)

P(An)
.

When CMn(dn) has no complex components, the event (Frag∗n ≃ G) ∩ An is
equivalent to Frag∗n ≃ G. Therefore, using Theorem 4.7, we obtain

P(Fragn ≃ G) =
P(Frag∗n ≃ G)

P(An)
+ o(1).

By Corollary 4.5, P(An) = e−ν/2−ν2/4 + o(1). This, together with the previous
theorem and the fact that aut(G) = auth.e.(G) when G is simple, proves the
result.
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From now on let p∗n(H) = P(Frag∗n ≃ H), pn(G) = P(Fragn ≃ G),
p∗(H) = limn→∞ p∗n(H), and p(G) = limn→∞ pn(G), for all unlabeled frag-
ments H, and all unlabeled simple fragments G. We recall that, as proven in
Theorem 5.1,

p∗(H) =

√
1− ν

auth.e.(H)

∏
i≥0

(
λii!

ρ1

)hi

,

where hi = |{v ∈ V (H) : deg(v) = i}|. Our next goal is to show that the
numbers p∗(H) define a distribution over unlabeled fragments, that is

∑
H p∗H =

1.

Definition 5.3. A lexicographically labeled forest (LLFo) is a rooted forest F
such that

(1) if F has r components, the roots v1, . . . vr are labeled by [r] in an arbitrary
way;

(2) if a vertex v with label ℓ ∈ N∗ has children v1, . . . , vj (in some arbitrary
order), then they are labeled by ℓ1, . . . , ℓj respectively, where by ℓi we
mean the concatenation of the label ℓ with i.

Given an integer K ≥ 1, we use FoK
lex to denote the set of LLFo with at least

K components.

Let D = (Dr, D) where Dr and D are two probability distributions over
non-negative integers, and let F be an LLFo. We define

pD(F ) :=
∏
i≥0

P(Dr = i)f
r
i

∏
i≥1

P(D = i− 1)fi , (33)

where fr
i denotes the number of roots in F whose degree is i and fi denotes

the number of non-root vertices in F of degree i. Equivalently, pD(F ) is the
probability that F is generated by a branching process where the first generation
has r individuals whose offspring is distributed as Dr, and the other elements
have offspring distribution D. It is well known that such process has extinction
probability 1 whenever E [D] < 1 [13, Theorem 3.1]. We can rephrase that fact
as follows.

Lemma 5.4. Let D = (Dr, D) where Dr and D are two probability distributions
over non-negative integers satisfying E [D] < 1. Fix an integer K ≥ 1. Then∑

T∈FoK
lex

pD(F ) = 1.

Fragments can be seen as collections of cycles where a tree “grows out” from
each vertex. Therefore, we can imagine the edges of the trees as being oriented
towards the cycle in their connected component. For a vertex v in the fragment
that is not in any of the cycles, we define its parent to be its unique vertex u
that v points to.

We now extend the definition of LLFo to fragments.

19



Definition 5.5. A lexicographically labeled fragment (LLFr) H is a fragment
where

(1) if H has r cycles, they are labeled by [r] in a non-decreasing order accord-
ing to their lengths (ties are resolved arbitrarily);

(2) if v1, . . . , vk are the vertices in a k-cycle with label ℓ ∈ [r], they are labelled
by ℓ1, . . . , ℓk following an arbitrary cyclic ordering;

(3) if a vertex v with label ℓ ∈ N∗ has children v1, . . . , vj , they are labeled by
ℓ1, . . . , ℓj following some arbitrary order.

Next lemma computes the number of LLFr isomorphic to a given fragment.

Lemma 5.6. Let H be a fragment. For each k ≥ 1, let ak be the number of
k-cycles in H. For each i ≥ 1, let hr

i be the number of vertices of degree i lying
in some cycle of H, and let hi be the number of vertices of degree i that are not
in any cycle of H. Then the number of LLFr isomorphic to H is

γ(H) :=
1

auth.e.(H)

∏
k≥1

ak!(2k)
ak

∏
i≥2

(i− 2)!h
r
i

∏
i≥1

(i− 1)!hi

 . (34)

Proof. First, note that if ϕ : V (H) → V (H) is an automorphism of some frag-
ment H and Ĥ is an LLFr isomorphic to H then permuting the labels in Ĥ
according to ϕ yields the same LLFr. Hence, to derive γ(H) we will count all the
ways of labelling V (H) to obtain an LLFr, and divide that number by aut(H).
For a fragment H the only multi-edges are those involved in 2-cycles, which
have multiplicity exactly two. By (8), we can write auth.e.(H) = aut(H)2a12a2 ,
and the RHS of (34) can be expressed as

1

aut(H)

∏
k≥1

ak!

2a2

∏
k≥3

(2k)ak

∏
i≥2

(i− 2)!h
r
i

∏
i≥1

(i− 1)!hi

 .

We argue that the number of ways we can label H to obtain an LLFr corre-
sponds to the product of the parentheses above. Such labelling is uniquely given
by (1) an ordering of the cycles in H that is non-decreasing with respect to their
lengths, (2) a cyclic ordering of the vertices inside of each cycle, and (3) an ar-
bitrary ordering of each vertex’s children. There are

∏
k≥1 ak! ways of achieving

(1). Given a k-cycle, there are exactly 2 cyclic orderings of its vertices when
k = 2, and 2k when k ≥ 3. Thus, there are 2a2

∏
k≥3(2k)

ak ways of achieving
(2). Finally, let us consider (3). Given a vertex of degree i lying on a cycle, there
are exactly (i − 2)! ways of ordering its children. Similarly, there are (i − 1)!
ways of ordering the children of a vertex of degree i not lying on a cycle. Hence,

there are
(∏

i≥2(i− 2)!h
r
i

)(∏
i≥1(i− 1)!hi

)
ways of achieving (3). This shows

the result.
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We can now show that p∗ is a probability distribution.

Theorem 5.7. Assume ν < 1. Then
∑

H p∗(H) = 1, where H ranges over all
finite unlabeled fragments.

Proof. Fix a = (ak)k≥1 a sequence of non-negative integers and suppose A =∑
k≥1 kak < ∞.
Let Fra be the set of all unlabeled fragments containing exactly ak k-cycles

for each k ≥ 1. Then, by Lemma 4.6, to prove the statement it is enough to
show that ∑

H∈Fra

p∗(H) =
√
1− ν

∏
k≥1

(νk/2k)ak

ak!
. (35)

Similarly, let Fra
lex be the set of all LLFr containing exactly ak k-cycles for each

k ≥ 1. By Lemma 5.6, we can write∑
H∈Fra

p∗(H) =
∑

H∈Fra
lex

p∗(H)

γ(H)
, (36)

where γ(H) is given in (34). Given H ∈ Fra
lex and i ≥ 1, we write hr

i for the
number of vertices of degree i lying in some cycle of H, and hi for the number
of vertices of degree i in H that are not in a cycle. Since

∑
i≥2 h

r
i =

∑
k≥1 kak,

it follows that,

p∗(H)

γ(H)
=

√
1− ν

∏
k≥1

1

ak!(2k)ak

∏
i≥2

(
λii(i− 1)

ρ1

)hr
i ∏
i≥1

(
λii

ρ1

)hi

=
√
1− ν

∏
k≥1

νkak

ak!(2k)ak

∏
i≥2

(
λii(i− 1)

ρ2

)hr
i ∏
i≥1

(
λii

ρ1

)hi

. (37)

Let v1, . . . , vA be the vertices belonging to the cycles in H, ordered in lex-
icographical order. We define the LLFo FH , as the one containing A trees,
corresponding to the ones growing out of v1, . . . , vA in that order. Observe
that the map H 7→ FH is a bijection between Fra

lex and the set FoA
lex of LLFo

consisting of A components. See Figure 1 for an example.
Consider the following distributions D and Dr over non-negative integers:

P(Dr = i− 2) =
i(i− 1)λi

ρ2
, for all i ≥ 2,

P(D = i− 1) =
iλi

ρ1
, for all i ≥ 1.

Using (33), we can rewrite (37) as

p∗(H)

γ(H)
=

√
1− ν

(∏
k≥1

νkak

ak!(2k)ak

)
pDFH

.
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Figure 1: Example of the map H 7→ FH .

From (36) and using the observation that H 7→ FH is a bijection between Fra
lex

and FoA
lex, we obtain

∑
H∈Fra

p∗(H) =
√
1− ν

∏
k≥1

(νk/2k)ak

ak!

∑
F∈FoA

lex

pDF =
√
1− ν

∏
k≥1

(νk/2k)ak

ak!
.

In the last equality we used that
∑

F∈FoA
lex

pDF = 1 by Lemma 5.4, since E [D] =
ν < 1.

Corollary 5.8. Assume ν < 1. Let Fr be the class of unlabeled fragments and
let H ∈ Fr. Then the sequences (H 7→ p∗n(H))n∈N and (H 7→ pn(H))n∈N of real
maps over Fr are tight. In particular, for all sequences ωn tending to infinity
as n → ∞, P(|Frag∗n| ≥ ωn) = o(1) and P(|Fragn| ≥ ωn) = o(1).

Proof. The last part of the statement follows from the definition of tight se-
quences. The fact that (H 7→ p∗n(H))n∈N is tight follows from Theorem 5.7. To
see that (H 7→ pn(H))n∈N is tight as well, note that by definition

pn(H) ≤ P(Frag∗n ≃ H)

P(CMn(dn) is simple)
(38)

and P(CMn(dn) is simple) ≥ e−ν/2−ν4/4 − o(1) > 0. Thus pn(H) ≤ Cp∗n(H)
and since the latter sequence is tight, so is the former one.
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6 First part of Theorem 1.3: A finite union of
intervals

In this section we show that L(d), the closure of the limit probabilities, is a
union of closed intervals. We postpone the supercritical and critical cases ν ≥ 1
for the next section, and focus on the subcritical case 0 < ν < 1. The key point
is that, in the subcritical regime, the FO properties of Gn(dn) are determined
w.h.p. by its fragment Fragn. This is (implicitly) stated in [18, Lemma 3.12].
However, the results in [18, 20] contain slight inaccuracies, that will be discussed
in Section 8.

Theorem 6.1 (Zero-one Law for FO in G(d) = (Gn(dn))n∈N). Suppose that
ν < 1. Let H ∈ Fr be an unlabelled fragment, and φ ∈ FO be a sentence. Then

lim
n→∞

P(Gn(dn) satisfies φ | Fragn ≃ H) ∈ {0, 1}.

Recall that when ν < 1 and H ∈ Fr, pn(H) = P(Fragn ≃ H), and p(H) =
limn→∞ pn(H). We now prove that L(d) equals the set of partial sums of
fragment probabilities.

Theorem 6.2. Assume ν < 1. Then

L(d) =

{∑
H∈U

pH

∣∣∣∣∣ U ⊆ Fr

}
. (39)

Proof. Let S(d) be the set of partial sums in the RHS of (39).
We first show that L(d) ⊆ S(d). It is a known fact (see e.g. [16, 23]) that

S(d) is closed and has no isolated points. Thus, S(d) = S(d), and it suffices to
show L(d) ⊆ S(d). Let ϕ ∈ FO be a sentence. For each H ∈ Fr, define

pn(ϕ,H) = P(Gn(dn) satisfies ϕ, Fragn ≃ H)

= P(Gn(dn) satisfies ϕ | Fragn ≃ H) pn(H).

Define p(ϕ) = limn→∞
∑

H∈Fr pn(ϕ,H). As pn(ϕ,H) ≤ pn(H), the sequence
of real maps over Fr, (H 7→ pn(ϕ,H))n∈N is tight, and the sum and limit
in the definition of p(ϕ) may be exchanged. By Theorem 6.1, we know that
limn→∞ P(Gn(dn) satisfies ϕ | Fragn ≃ H) ∈ {0, 1}. Let U = Uϕ ⊆ Fr be the
set of fragments for which this limit is 1. We conclude

p(ϕ) =
∑

H∈Fr

lim
n→∞

pn(ϕ,H) =
∑
H∈U

p(H) ∈ S(d).

We now show that L(d) ⊇ S(d). Let U ⊆ Fr be an arbitrary family of frag-
ments. We give a sequence of FO sentences ϕk(U) satisfying limk→∞ p(ϕk(U)) =∑

H∈U p(H). For each H ∈ Fr and k ∈ N, let ϕk(H) ∈ FO be the sentence stat-
ing that the graph G contains an isolated copy of H, and that no k-tuple of ver-
tices outside this copy induce a cycle. Suppose that U is infinite. Let (Ui)i∈N be a
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monotonically increasing chain of finite sets Ui ⊂ U satisfying
⋃

i∈N Ui = U . De-

fine ϕk(U) =
∨

H∈Uk
ϕk(H). The union of disjoint events

(∨
H∈Uk

Fragn ≃ H
)

implies Gn(dn) satisfies ϕk(U). Let An,k be the event that Gn(dn) contains a
cycle of length larger than k. Then, (Gn(dn) satisfies ϕk(U)) ∧ (¬An,k) implies(∨

H∈Uk
Fragn ≃ H

)
as well. Thus,

|pn(ϕk(U))−
∑

H∈Uk

pn(H)| ≤ P(An,k). (40)

By Corollary 4.5 and Markov inequality, limk→∞ limn→∞ P(An,k) = 0.
Taking limits in both sides of (40), first with respect to n → ∞ and then to

k → ∞, we obtain,

lim
k→∞

(
p(ϕk(U))−

∑
H∈Uk

p(H)

)
= 0.

By the definition of infinite sum this proves that∑
H∈U

p(H) = lim
k→∞

p(ϕk(U)) ∈ L(d).

If U is finite, then the proof follows from a simpler argument, by defining
ϕk(U) =

∨
H∈U ϕk(H).

The desired results about L(d) follow from analysing the set of fragment
probabilities and using Kakeya’s Criterion (Lemma 2.5). A technical difficulty
that arises in the proof is that fragment probabilities depend on many more
features of d other than the parameter ν. In order to circumvent this issue, we
use the following lemma.

Lemma 6.3. Suppose that ν < 1. Define Q = Q(ν) =
√
1− ν · eν/2+ν2/4. Let

a = (an)n≥3 be a sequence of natural numbers an ∈ N with
∑

n≥3 an < ∞.
Consider

Fra = {H ∈ Fr | H contains exactly ai i-cycles for each i ≥ 3}.

Then ∑
H∈Fra

p(H) = Q
∏
i≥3

(νi/2i)ai

ai!
. (41)

In particular, p(H) is maximized when H is the empty fragment.

Proof. Let Bn be the event that Gn(dn) contains exactly ai i-cycles for each
i ≥ 3. By Lemma 4.6 it holds that

P(Bn) = Q
∏
i≥3

(νi/2i)ai

ai!
+ o(1).
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For each H ∈ Fr, let

qn(H) = P(Bn | Fragn ≃ H)P(Fragn ≃ H).

By the law of total probability P(Bn) =
∑

H∈Fr qn(H). Moreover, observe that
qn(H) ≤ pn(H) for all H ∈ Fr, so the sequence of maps (H 7→ qn(H))n∈N is
tight. This way

lim
n→∞

P(Bn) =
∑

H∈Fr

lim
n→∞

qn(H). (42)

By Theorem 4.7, we know that w.h.p. all cycles in Gn(dn) lie in Fragn.
This implies that qn(H) = p(H) + o(1) if H ∈ Fra and qn(H) = o(1)

otherwise. Using this in (42), we obtain (41).
It remains to show that p(H) is maximized at the empty fragment. Let

H ∈ Fr be non-empty, and let a = (ai)i≥3 be the sequence where ai is the
number of i-cycles in H for each i ≥ 3. By Equation (41),

p(H) ≤ Q
∏
i≥3

(νi/2i)ai

ai!
.

However, as ν < 1, the expression on the right is at most Q, which is the
probability of the empty fragment. This completes the proof.

For the remainder of this subsection, we number the fragments in Fr as
H1, H2, . . . in such a way that p(Hi) ≥ p(Hj) for all i < j. For convenience we
define pi = p(Hi). For each i > 1, let k = k(i) be the number satisfying

Qνk

2k
≥ pi >

Qνk+1

2(k + 1)
, (43)

where Q = Q(ν) =
√
1− ν ·eν/2+ν2/4 as in last lemma. We impose the condition

i > 1, becauseH1 corresponds to the empty fragment and p1 = Q by Lemma 4.6,
so k(1) is not well-defined. Observe that Lemma 6.3 implies k(i) ≥ 3 for all i > 1.
Finally, the probabilities pi are non-increasing by definition and have limit zero,
so k(i) is non-decreasing and tends to infinity with i → ∞.

Lemma 6.4. Assume ν < 1. Then L(d) is a finite union of intervals in [0, 1].

Proof. Let i0 be the smallest index i > 1 for which
∑k(i)−2

j=3 (1/j) ≥ 4/ν, which
exists as the harmonic series diverges. We prove that pi ≤

∑
j>i pj for any

i ≥ i0. By Kakeya’s Criterion, this implies the result. Let i > i0, k = k(i). For
each 3 ≤ ℓ ≤ ⌊k+1

2 ⌋, let Frℓ be the set of unlabeled fragments containing an
ℓ-cycle, a (k − ℓ+ 1)-cycle, and no other cycle. By Lemma 6.3, it holds that

∑
H∈Frℓ

p(H) =

{
Q′/2 if k is odd and ℓ = k+1

2 ,

Q′ otherwise,
(44)
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where Q′ = Qνk+1

4ℓ(k−ℓ+1) . For any ℓ, this sum is at most Qνk+1

2(k+1) , which is at most

pi by (43). In particular, p(H) < pi for all H ∈ Frℓ and

⌊ k+1
2 ⌋⋃

ℓ=3

Frℓ ⊂ {Hj | j > i}.

By the choice of i0 and i ≥ i0, and by (43), we obtained the desired condition

∑
j>i

pj ≥
⌊ k+1

2 ⌋∑
ℓ=3

∑
H∈Frℓ

p(H)

=
Qνk+1

8

k−2∑
ℓ=3

1

ℓ(k − ℓ+ 1)

≥ Qνk+1

8k

k−2∑
ℓ=3

1

ℓ

≥ Qνk

2k
≥ pi.

7 Second part of Theorem 1.3: Phase transition
at ν0

We recall that ν0 is defined as the unique root in [0, 1] of

√
1− ν · e ν

2+
ν2

4 = 1/2. (45)

Lemma 7.1. The following hold.

(1) if 0 < ν < ν0, then L(d) has at least one gap, and

(2) if ν ≥ ν0, then L(d) = [0, 1].

Proof. The case ν ≥ 1 can be proven exactly as in [17, Section 3.1], using our
results about the distribution of small cycles in Gn(dn) described in Section 4.
We thus assume that ν < 1.

As in the previous subsection, let H1, H2, . . . be an enumeration of the class
of fragments Fr satisfying p(H1) ≥ p(H2) ≥ . . . , and let pi = p(Hi) for all
i ≥ 1. By Kakeya’s Criterion, L(d) = [0, 1] if and only if

pi ≤
∑
j>i

pj , (46)

for all i ≥ 1.
We first show (1). Recall that ν0 is defined as the only solution to Q(ν0) =

1/2, which lies in the interval [0, 1]. As Q(ν) is monotonically decreasing in [0, 1]
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(see (5)) and 0 < ν < ν0, it holds that Q(ν) > 1/2. Recall that H1 corresponds
to the empty fragment. By Lemma 6.3,

p1 = Q > 1/2 > 1−Q =
∑
j>1

pj .

and (46) does not hold for i = 1, which implies that L(d) contains at least one
gap.

Now we proceed to show (2). In this case, ν0 ≤ ν < 1, and (46) holds for
i = 1, because Q ≤ 1/2. We show that (46) holds for i > 1 as well. Fix i > 1 and
let k = k(i). For all ℓ ≥ 3, we define Frℓ as the set of unlabeled fragments con-
taining an ℓ-cycle and no other cycles. By Lemma 6.3,

∑
H∈Frℓ

pH = Qνℓ/(2ℓ).
We have ∑

j>i

pj ≥
∑
ℓ>k

∑
H∈Frℓ

pH = Q
∑
ℓ>k

νℓ

2ℓ
≥ Qνk

2k

∑
m≥1

(
νk

k + 1

)m

, (47)

where the last inequality follows from the fact that if aℓ = νℓ/(2ℓ), then aℓ+1 ≥
νk
k+1 aℓ for all ℓ ≥ k. Since k(i) ≥ 3 for all i > 1, then k

k+1 ≥ 3/4. Note that
ν0 ≥ 3/4, so the LHS of (47) can be bounded as∑

j>i

pj ≥
Qνk

2k

∑
m≥1

(3/4)2m =
9

7
· Qνk

2k
>

Qνk

2k
≥ pi,

where we used (43) in the last step. The criterion implies that L(d) = [0, 1].

8 Remarks About the Convergence Law

In this section we discuss the convergence law studied by Lynch in [18, 20].
His main result states that, under some conditions on the asymptotic degree
sequence d, the limit of P(Gn(dn) satisfies ϕ) exists for any FO sentence ϕ. We
note that Lynch’s requirements on d are non-comparable with Assumption 1.1.

Definition 8.1. We call an asymptotic degree sequence d smooth if it satis-
fies conditions (i), (ii) and (iv) from Assumption 1.1, as well as the following
weakening of (iii):

lim
n→∞

E [Dn] exists, is bounded and equals E [D] .

Both papers [18, 20] deal with smooth degree sequences. However, there is
no condition on the convergence of E

[
D2

n

]
to a finite quantity. Instead, this is

replaced by a bound on the maximum degree: the existence of a cutoff function
ω(n) satisfying ∆(n) ≤ ω(n). In [20], ω(n) = nα, where α < 1/4, while in [18],
ω(n) was sub-polynomial (that is, ω(n) = o(nα) for all α > 0). Observe that
neither cutoff is enough to guarantee that E

[
D2

n

]
converges to a finite quantity

(in fact, no diverging cutoff function is enough). This is relevant because of next
result.

27



Lemma 8.2. Let d = dn be a smooth asymptotic degree sequence with E
[
D2

n

]
→

∞ as n → ∞. Then CMn(dn) a.a.s. contains a loop.

Sketch of the proof. Let Xn count the number of loops in CMn(dn). Then

E [Xn] =
1

2

∑
v∈[n]

dv(dv − 1)

2mn − 1
=

1

2
· ρn,2
ρn,1 − 1/n

.

Using that ρn,2 diverges and d is smooth we get that E [Xn] → ∞. The result
follows from proving that Var (Xn) = o(E

[
X2

n

]
) and using the second moment

method.

The approach followed in [18, 20] consists of proving a FO convergence law
for the multigraph CMn(dn), and transferring this result to Gn(dn) afterwards
by conditioning CMn(dn) to the event of being simple. In order to make this
work, it was taken for granted that the probability that CMn(dn) is simple was
bounded away from zero. However, because of last lemma, this is not true unless
the second moment E

[
D2

n

]
is bounded.

However, we claim that a G(d) satisfies a FO convergence law whenever d
follows Assumption 1.1. Our aim is not to give a full proof of this statement,
but we sketch it in the rest of the section.

In [19] Lynch showed that the binomial graph Gn(pn) satisfies a FO conver-
gence law when pn ∼ c/n for any real constant c > 0. Informally, this follows
from three facts about Gn(c/n). The r-core Corer(G) of a graph G is the graph
induced by the r-neighborhood of all its cycles of size at most 2r+1, and define
Coren,r as the r-core of Gn(c/n). Then for any fixed r > 0 the following hold:

(I) w.h.p. any rooted tree of height at most r appears as the r-neighbourhood
of some vertex in Gn(c/n) more than K times, for any fixed integer K > 0,

(II) w.h.p. Coren,k is a disjoint union of unicyclic graphs (i.e., a fragment),

(III) and Coren,r has a well-defined asymptotic distribution.

We claim that the same three facts hold true in the multigraph CMn(dn),
with small changes. Let Core∗n,r denote the r-core of CMn(dn).

For Fact (I) we consider only rooted trees without forbidden degrees accord-
ing to d: those that do not have vertices of degree k, where k satisfies the
condition (iv) of Assumption 1.1. To see that this holds it is enough to ob-
serve that the r-neighbourhood of an arbitrary tuple of vertices in CMn(dn)
converges in distribution to a branching process with as many roots as vertices
in the tuple, whose root offspring distribution is D and general offspring distri-
bution is D̂. Alternatively, one can use the second moment to show that there
are many copies of any valid tree; this is precisely the part of the proof that
requires condition (iv).

Fact (II) follows from a simple first-moment argument: a multigraph con-
sisting of two small cycles that intersect has positive excess. The same holds
true for two cycles joined by a short path. The proof is as Theorem 4.7 but
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simpler: as we bound the size of the cycles and the paths, then there is only a
finite number of forbidden configurations to be considered.

Fact (III) is the more convoluted one, we sketch the argument in what fol-
lows. The small-cycle distribution of CMn(dn) converges to a vector of indepen-
dent Poisson random variables, as shown in Lemma 4.3. Consider an arbitrary
disjoint union of cycles H, each of size at most 2r + 1. Let AH = An,H be the
event that the union of cycles of size at most 2r + 1 in CMn(dn) is isomorphic
to H, and let CMH

n (d) denote CMn(dn) conditioned on that event. Now, let
v1, . . . , vℓ be the fixed vertices lying on the H-copy of CMH

n (d). Delete the
edges of H and denote by F the r-neighbourhood of v1, . . . , vℓ in the resulting
multigraph. Then F converges in distribution to the first r-generations of a
multi-rooted branching process with ℓ roots, offspring distribution D̂ and root
offspring distribution D̃ given by

P(D̃ = i− 2) =
i(i− 1)P(D = i)

ρ2
.

Indeed, for each vertex in H, which correspond to the roots of F , we delete two
edges. This shows that Core∗n,r converges in distribution to a random fragment
where the cycle counts are given by appropriate Poisson distributions, and the
trees that grow out of the cycles follow the distribution given by the branching
process described above, proving (III). Compare this with the interpretation of
the limit distribution of the fragment obtained in Theorem 5.7, and observe the
similarities. A random fragment H following that distribution is constructed as
follows: First generate the set of cycles of H, letting the number of k-cycles in
H follow a Poisson random variable with parameter νk/2k, independently for
each k ≥ 1. Afterwards, attach to each vertex lying on a cycle an independent
copy of the branching process with offspring distribution D̂ and root offspring
distribution D̃. In the setting of Theorem 5.7, the generated fragment was
guaranteed to be finite because ν < 1. Here we do not have this assumption,
but instead we bound the maximum size of the generated cycles to 2r + 1, and
only consider the first r generations of each branching process.

Facts (I), (II), and (III) for CM(d) show a FO-convergence law in the con-
figuration model in the same fashion as shown in [19]. Let φ be a FO-sentence,
let k be its quantifier rank and let r = (3k−1)/2. Let Ωr be the set of unlabeled
fragments consisting of cycles of size at most 2r+1 with trees of height at most
r attached to them. Using pebble games and Fact (I) one can show that

lim
n→∞

P(CMn(dn) satisfies φ | Core∗n,r ≃ H) ∈ {0, 1}, (48)

for any H ∈ Ωr. Facts (II) and (III) show that Core∗n,r converges in distribution
to a random graph from Ωr. Hence,

lim
n→∞

P(CMn(dn) satisfies φ) =∑
H∈Ωr

lim
n→∞

P(CMn(dn) satisfies φ | Core∗n,r ≃ H) · P(Core∗n,r ≃ H).
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In the last sum, each of the first factors converge to either zero or one by (48),
and the right factors converge to a fixed probability by (III). This shows that
the probability CMn(dn) satisfies φ converges, as desired.

9 Acknowledgements

We thank Prof. Marc Noy for sharing this problem with us, for our discussions
and for his comments on previous iterations of the manuscript.

Alberto Larrauri was supported by the UKRI grant ”New Approaches to
Approximability of Satisfiable Problems” (NAASP). Guillem Perarnau was sup-
ported by the Grant PID2020-113082GB-I00, the Grant RED2022-134947-T and
the Grant CEX2020-001084-M, all of them funded by MICIU / AEI / 10.13039
/ 501100011033.

References

[1] E. A. Bender and E. R. Canfield. “The Asymptotic Number of Labeled
Graphs with given Degree Sequences”. In: Journal of Combinatorial The-
ory, Series A 24.3 (May 1978).

[2] B. Bollobás. “A probabilistic proof of an asymptotic formula for the num-
ber of labelled regular graphs”. In: European Journal of Combinatorics
1.4 (1980), pp. 311–316.

[3] B. Bollobás. Random Graphs. Second. Cambridge Studies in Advanced
Mathematics. Cambridge: Cambridge University Press, 2001.

[4] B. Bollobás and B.D. McKay. “The number of matchings in random reg-
ular graphs and bipartite graphs”. In: Journal of Combinatorial Theory,
Series B 41.1 (1986), pp. 80–91.

[5] C. Bordenave. Lecture notes on random graphs and probabilistic combina-
torial optimization. https://www.math.univ-toulouse.fr/ bordenave/coursRG.pdf.
2016.

[6] S. Dhara, D. Mukherjee, and S. Sen. “Phase transitions of extremal cuts
for the configuration model”. In: Electron. J. Probab 22.86 (2017), pp. 1–
29.
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A Proof of auxiliary lemmas

Lemma A.1. Let α1, α2, . . . , αk, β1, β2, . . . , βk be positive integers satisfying
αi ≥ βi for all i ∈ [k]. Define α =

∑
i∈[k] αi, and β =

∑
i∈[k] βi. Then

∏
i∈[k]

∏
0≤j<βi

(αi − j) ≤ (α)β
αβ

( ∏
β−k+1≤j<β

α

α− j

) ∏
i∈[k]

αβi

i . (49)

Proof. The proof is by induction on β for each k and α1, . . . , αk fixed. For β = k
the result is trivial. Suppose now that β > k. Then, for some t ∈ [k] it must be
that βt − 1 ≥ (β − k)αt/α. This is because∑

i∈[k]

βi − 1 = β − k =
∑
i∈[k]

(β − k)αi/α.

In particular, this means that

αt

αt − βt + 1
≥ α

α− β + k
. (50)

Observe that our assumption β > k implies βt > 1. Additionally, by the
induction hypothesis∏

i∈[k]

∏
0≤j<β′

i

αi

αi − j
≥

∏
0≤j<β′−k+1

α

α− j
,

where β′
i = βi for i ̸= t, β′

t = βt − 1, and β′ = β − 1. Multiplying by (50) yields∏
i∈[k]

∏
0≤j<βi

αi

αi − j
≥

∏
0≤j<β−k+1

α

α− j
. (51)

Rearranging we obtain∏
i∈[k]

∏
0≤j<βi

(αi − j) ≤
∏

0≤j<β−k+1

α− j

α

∏
i∈[k]

αβi

i . (52)

Multiplying and dividing by (α)β on the right hand side of the previous equation
yields the desired result.

Lemma A.2. Let ∆ = ∆N be a function on N satisfying ∆N = o(
√
N). There

is a sequence ξN tending to 0 as N → ∞ such that:

(i) for all 0 ≤ a < ∆,
Na(N − a)!

N !
≤ eaξN .

(ii) for all ∆ ≤ a < N ,
N∆(N − a)!

(N +∆− a)!
≤ eaξN .
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Proof. We begin with the proof of (ii), so suppose that ∆ ≤ a < N . By Stirling’s
approximation, we know that for all k > 0

√
2πk

(
k

e

)k

e
1

12k+1 ≤ k! ≤
√
2πk

(
k

e

)k

e
1

12k .

Hence
N∆(N − a)!

(N +∆− a)!
≤ CD,

where

C =

(
1 +

a−∆

N +∆− a

)∆(
1− ∆

N +∆− a

)N−a

e∆, (53)

D =

√
N − a

N +∆− a
e

1
12(N−a)

− 1
12(N−a+∆)+1 . (54)

Clearly D ≤ e1/12 for all ∆ ≤ a < N , so ln(D)/a tends to zero uniformly with
N . Now we need to prove the same for ln(C)/a. We consider two cases. First,
suppose that N − a ≤ N2/3. Since ∆ = o(

√
N), we have for N large enough

C ≤ e∆(N/∆)∆ ≤ eN
2/3

Since N ∼ a, we have that ln(C)/a tends to zero.
Otherwise, suppose that N − a ≥ N2/3. Using the inequality 1 + x ≤ ex for

all x ∈ R, we get that

C ≤ exp

[
∆
(a−∆)− (N + a) + (N − a+∆)

N − a+∆

]
= exp

[
∆a

N − a+∆

]
.

Thus, all ∆ ≤ a ≤ ∆
√
N ,

ln(C)

a
=

∆

N − a+∆
≤ ∆

N2/3
,

which tends to zero because ∆ = o(
√
N).

Now let us show (i), so suppose that 0 ≤ a < ∆. It holds that

Na(N − a)!

N !
≤
(

N

N − a

)a

≤ ea
2/(N−a) ≤ ea

∆
N−∆ ,

where we have used that a < ∆ < N in the last inequality. The function ∆
N−∆

tends to zero with N and depends only on N and ∆, as we wanted.
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